1.1

1.2

UNIX System Overview

Introduction

All operating systems provide services for programs they run. Typical services include
executing a new program, opening a file, reading a file, allocating a region of memory,
getting the current time of day, and so on. The focus of this text is to describe the
services provided by various versions of the UNIX operating system.

Describing the UNIX System in a strictly linear fashion, without any forward
references to terms that haven’t been described yet, is nearly impossible (and would
probably be boring). This chapter provides a whirlwind tour of the UNIX System from
a programmer’s perspective. We'll give some brief descriptions and examples of terms
and concepts that appear throughout the text. We describe these features in much more
detail in later chapters. This chapter also provides an introduction and overview of the
services provided by the UNIX System, for programmers new to this environment.

UNIX Architecture

In a strict sense, an operating system can be defined as the software that controls the
hardware resources of the computer and provides an environment under which
programs can run. Generally, we call this software the kernel, since it is relatively small
and resides at the core of the environment. Figure 1.1 shows a diagram of the UNIX
System architecture.

The interface to the kernel is a layer of software called the system calls (the shaded
portion in Figure 1.1). Libraries of common functions are built on top of the system call

2

UNIX System Overview Chapter 1

1.3

applications

libra routines

Figure 1.1 Architecture of the UNIX operating system

interface, but applications are free to use both. (We talk more about system calls and
library functions in Section 1.11.) The shell is a special application that provides an
interface for running other applications.

In a broad sense, an operating system is the kernel and all the other software that
makes a computer useful and gives the computer its personality. This other software
includes system utilities, applications, shells, libraries of common functions, and so on.

For example, Linux is the kernel used by the GNU operating system. Some people

 refer to this as the GNU/Linux operating system, but it is more commonly referred to as

simply Linux. Although this usage may not be correct in a strict sense, it is
understandable, given the dual meaning of the phrase operating system. (It also has the
advantage of being more succinct.)

Logging In

Login Name

When we log in to a UNIX system, we enter our login name, followed by our password.
The system then looks up our login name in its password file, usually the file
/etc/passwd. If we look at our entry in the password file we see that it's composed of
seven colon-separated fields: the login name, encrypted password, numeric user ID
(205), numeric group ID (105), a comment field, home directory (/home/sar), and shell
program (/bin/ksh).

sar:x:205:105:Stephen Rago:/home/sar:/bin/ksh

All contemporary systems have moved the encrypted password to a different file.
In Chapter 6, we'll look at these files and some functions to access them.

Section 1.3

Logging In 3

Shells

Once we log in, some system information messages are typically displayed, and then
we can type commands to the shell program. (Some systems start a window
management program when you log in, but you generally end up with a shell running
in one of the windows.) A shell is a command-line interpreter that reads user input and
executes commands. The user input to a shell is normally from the terminal (an
interactive shell) or sometimes from a file (called a shell script). The common shells in
use are summarized in Figure 1.2.

Name Path FreeBSD 5.2.1 | Linux2.4.22 |{ MacOS X 10.3 | Solaris 9
Bourne shell /bin/sh . link to bash link to bash .
Bourne-again shell | /bin/bash optional . . .

C shell /bin/csh linkto tcsh | link to tcsh link to tcsh .
Korn shell /bin/ksh * .
TENEX C shell /bin/tcsh

Figure 1.2 Common shells used on UNIX systems

The system knows which shell to execute for us from the final field in our entry in the
password file. :

The Bourne shell, developed by Steve Bourne at Bell Labs, has been in use since
Version 7 and is provided with almost every UNIX system in existence. The
control-flow constructs of the Bourne shell are reminiscent of Algol 68.

The C shell, developed by Bill Joy at Berkeley, is provided with all the BSD releases.
Additionally, the C shell was provided by AT&T with System V/386 Release 3.2 and is
also in System V Release 4 (SVR4). (We’'ll have more to say about these different
versions of the UNIX System in the next chapter.) The C shell was built on the 6th
Edition shell, not the Bourne shell. Its control flow looks more like the C language, and
it supports additional features that weren’t provided by the Bourne shell: job control, a
history mechanism, and command line editing.

The Korn shell is considered a successor to the Bourne shell and was first provided
with SVR4. The Korn shell, developed by David Korn at Bell Labs, runs on most UNIX
systems, but before SVR4 was usually an extra-cost add-on, so it is not as widespread as
the other two shells. It is upward compatible with the Bourne shell and includes those
features that made the C shell popular: job control, command line editing, and so on.

The Bourne-again shell is the GNU shell provided with all Linux systems. It was
designed to be POSIX-conformant, while still remaining compatible with the Bourne
shell. It supports features from both the C shell and the Korn shell.

The TENEX C shell is an enhanced, version of the C shell. It borrows several
features, such as command completion, from the TENEX operating system (developed
in 1972 at Bolt Beranek and Newman). The TENEX C shell adds many features to the C
shell and is often used as a replacement for the C shell.

Linux uses the Bourne-again shell for its default shell. In fact, /bin/sh is a link to
/bin/bash. The default user shell in FreeBSD and Mac OS X is the TENEX C shell, but they
use the Bourne shell for their administrative shell scripts because the C shell’s programming

4 UNIX System Overview Chapter 1

language is notoriously difficult to use. Solaris, having its heritage in both BSD and System V,
provides all the shells shown in Figure 1.2. Free ports of most of the shells are available on the
Internet.

Throughout the text, we will use parenthetical notes such as this to describe historical notes
and to compare different implementations of the UNIX System. Often the reason for a
particular implementation technique becomes clear when the historical reasons are described.

Throughout this text, we’ll show interactive shell examples to execute a program
that we’ve developed. These examples use features common to the Bourne shell, the
Korn shell, and the Bourne-again shell.

1.4 Files and Directories

File System

The UNIX file system is a hierarchical arrangement of directories and files. Everything
starts in the directory called root whose name is the single character /.

A directory is a file that contains directory entries. Logically, we can think of each
directory entry as containing a filename along with a structure of information
describing the attributes of the file. The attributes of a file are such things as type of
file—regular file, directory—the size of the file, the owner of the file, permissions for
the file—whether other users may access this file—and when the file was last modified.
The stat and fstat functions return a structure of information containing all the
attributes of a file. In Chapter 4, we'll examine all the attributes of a file in great detail.

We make a distinction between the logical view of a directory entry and the way it is actually
stored on disk. Most implementations of UNIX file systems don’t store attributes in the
directory entries themselves, because of the difficulty of keeping them in synch when a file has
multiple hard links. This will become clear when we discuss hard links in Chapter 4.

Filename

The names in a directory are called filenames. The only two characters that cannot
appear in a filename are the slash character (/) and the null character. The slash
separates the filenames that form a pathname (described next) and the null character
terminates a pathname. Nevertheless, it’s good practice to restrict the characters in a
filename to a subset of the normal printing characters. (We restrict the characters
because if we use some of the shell’s special characters in the filename, we have to use
the shell’s quoting mechanism to reference the filename, and this can get complicated.)

Two filenames are automatically created whenever a new directory is created: .
(called dot) and . . (called dot-dot). Dot refers to the current directory, and dot-dot refers
to the parent directory. In the root directory, dot-dot is the same as dot.

The Research UNIX System and some older UNIX System V file systems restricted a
filename to 14 characters. BSD versions extended this limit to 255 characters. Today,
almost all commercial UNIX file systems support at least 255-character filenames.

Section 1.4) Files and Directories 5

Pathname

A sequence of one or more filenames, separated by slashes and optionally starting with
a slash, forms a pathname. A pathname that begins with a slash is called an absolute
pathname; otherwise, it’s called a relative pathname. Relative pathnames refer to files
relative to the current directory. The name for the root of the file system (/) is a
special-case absolute pathname that has no filename component.

Example

Listing the names of all the files in a directory is not difficult. Figure 1.3 shows a
bare-bones implementation of the 1s(1) command.

#include "apue.h"
#include <dirent.h>

int
main(int argc, char *argv(])
{
DIR *dp;
struct dirent *dirp;
if (argc != 2)
err_quit("usage: ls directory name");
if ((dp = opendir(argv[l])) == NULL)
err sys("can’'t open %s", argv[l]);
while ((dirp = readdir(dp)) != NULL)

printf ("$s\n", dirp->d_name) ;

closedir (dp) ;
exit (0);

Figure 1.3 List all the files in a directory

The notation 1s(1) is the normal way to reference a particular entry in the UNIX
system manuals. It refers to the entry for 1s in Section 1. The sections are normally
numbered 1 through 8, and all the entries within each section are arranged
alphabetically. Throughout this text, we assume that you have a copy of the manuals
for your UNIX system.

Historically, UNIX systems lumped all eight sections together into what was called the UNIX
Programmer’s Manual. As the page count increased, the trend changed to distributing the
sections among separate manuals: one for users, one for programmers, and one for system
administrators, for example.

Some UNIX systems further divide the manual pages within a given section, using an
uppercase letter. For example, all the standard input/output (1/0) functions in AT&T [1990e]
are indicated as being in Section 3S, as in fopen(3S). Other systems have replaced the
numeric sections with alphabetic ones, such as C for commands.

6

UNIX System Overview Chapter 1

Today, most manuals are distributed in electronic form. If your manuals are online,
the way to see the manual pages for the 1s command would be something like

man 1 1ls

or
man -sl1 ls

Figure 1.3 is a program that just prints the name of every file in a directory, and
nothing else. If the source file is named myls.c, we compile it into the default a.out
executable file by

cc myls.c

Historically, cc (1) is the C compiler. On systems with the GNU C compilation system, the C
compiler is gec(1). Here, cc is often linked to gcc.

Some sample output is

$./a.out /dev

console
tty
mem
kmem
null
mouse
stdin
stdout
stderr
zero
many more lines that aren’t shown
cdrom
$./a.out /var/spool/cron
can’t open /var/spool/cron: Permission denied
$./a.out /dev7/tty
can’t open /dev/tty: Not a directory

Throughout this text, we’ll show commands that we run and the resulting output in this
fashion: Characters that we type are shown in this font, whereas output from
programs is shown like this. If we need to add comments to this output, we'll show
the comments in italics. The dollar sign that precedes our input is the prompt that is
printed by the shell. We’ll always show the shell prompt as a dollar sign.

Note that the directory listing is not in alphabetical order. The 1s command sorts

‘the names before printing them.

There are many details to consider in this 20-line program.

¢ First, we include a header of our own: apue.h. We include this header in almost
every program in this text. This header includes some standard system headers and
defines numerous constants and function prototypes that we use throughout the
examples in the text. A listing of this header is in Appendix B.

Section 1.4 Files and Directories 7

* The declaration of the main function uses the style supported by the ISO C
standard. (We'll have more to say about the ISO C standard in the next chapter.)

* We take an argument from the command line, argv [1], as the name of the directory
to list. In Chapter 7, we'll look at how the main function is called and how the
command-line arguments and environment variables are accessible to the program.

* Because the actual format of directory entries varies from one UNIX system to
another, we use the functions opendir, readdir, and closedir to manipulate the
directory.

* The opendir function returns a pointer to a DIR structure, and we pass this pointer
to the readdir function. We don’t care what’s in the DIR structure. We then call
readdir in a loop, to read each directory entry. The readdir function returns a
pointer to a dirent structure or, when it’s finished with the directory, a null pointer.
All we examine in the dirent structure is the name of each directory entry
(d_name). Using this name, we could then call the stat function (Section 4.2) to
determine all the attributes of the file.

* We call two functions of our own to handle the errors: err sys and err_quit. We
can see from the preceding output that the err_sys function prints an informative
message describing what type of error was encountered (“Permission denied” or
“Not a directory”). These two error functions are shown and described in
Appendix B. We also talk more about error handling in Section 1.7.

* When the program is done, it calls the function exit with an argument of 0. The
function exit terminates a program. By convention, an argument of 0 means OK,
and an argument between 1 and 255 means that an error occurred. In Section 8.5, we
show how any program, such as a shell or a program that we write, can obtain the
exit status of a program that it executes.]

Working Directory

Every process has a working directory, sometimes called the current working directory.
This is the directory from which all relative pathnames are interpreted. A process can
change its working directory with the chdir function.

For example, the relative pathname doc/memo/joe refers to the file or directory
joe, in the directory memo, in the directory doc, which must be a directory within the
working directory. From looking just at this pathname, we know that both doc and
memo have to be directories, but we can’t tell whether joe is a file or a directory. The
pathname /usr/lib/lint is an absolute pathname that refers to the file or directory
lint in the directory 11ib, in the directory usr, which is in the root directory.

Home Directory

When we log in, the working directory is set to our home directory. Our home directory
is obtained from our entry in the password file (Section 1.3).

8 UNIX System Overview Chapter 1

1.5 Input and Output

File Descriptors

File descriptors are normally small non-negative integers that the kernel uses to identify
the files being accessed by a particular process. Whenever it opens an existing file or
creates a new file, the kernel returns a file descriptor that we use when we want to read
or write the file.

Standard Input, Standard Output, and Standard Error

By convention, all shells open three descriptors whenever a new program is run:
standard input, standard output, and standard error. If nothing special is done, as in
the simple command

1ls

then all three are connected to the terminal. Most shells provide a way to redirect any
or all of these three descriptors to any file. For example,

ls > file.list

executes the 1s command with its standard output redirected to the file named
file.list.

Unbuffered I/0

Unbuffered 1/0 is provided by the functions open, read, write, 1seek, and close.
These functions all work with file descriptors.

Example

If we're willing to read from the standard input and write to the standard output, then
the program in Figure 1.4 copies any regular file on a UNIX system.

#include "apue.h"
#define BUFFSIZE 4096

int
main(void)
{
int n;
char buf [BUFFSIZE] ;

while ((n = read(STDIN FILENO, buf, BUFFSIZE)) > 0)
if (write(STDOUT_FILENO, buf, n) != n)
err sys("write error");

Section 1.5 Input and Output 9

if (n < 0)
err_sys("read error");

exit (0) ;

Figure 1.4 Copy standard input to standard output

The <unistd.h> header, included by apue.h, and the two constants STDIN_FILENO
and STDOUT FILENO are part of the POSIX standard (about which we’ll have a lot
more to say in the next chapter). In this header are function prototypes for many of the
UNIX system services, such as the read and write functions that we call.

The constants STDIN FILENO and STDOUT_FILENO are defined in <unistd.h>
and specify the file descriptors for standard input and standard output. These values
are typically 0 and 1, respectively, but we’ll use the new names for portability.

In Section 3.9, we'll examine the BUFFSIZE constant in detail, seeing how various
values affect the efficiency of the program. Regardless of the value of this constant,
however, this program still copies any regular file.

The read function returns the number of bytes that are read, and this value is used
as the number of bytes to write. When the end of the input file is encountered, read
returns 0 and the program stops. If a read error occurs, read returns -1. Most of the
system functions return —1 when an error occurs.

If we compile the program into the standard name (a. out) and execute it as

./a.out > data

standard input is the terminal, standard output is redirected to the file data, and
standard error is also the terminal. If this output file doesn’t exist, the shell creates it by
default. The program copies lines that we type to the standard output until we type the
end-of-file character (usually Control-D).

If we run

./a.out < infile > outfile

then the file named infile will be copied to the file named outfile. m]
In Chapter 3, we describe the unbuffered I/O functions in more detail.
Standard I/O

The standard I/O functions provide a buffered interface to the unbuffered I /O
functions. Using standard I/O prevents us from having to worry about choosing
optimal buffer sizes, such as the BUFFSIZE constant in Figure 1.4. Another advantage
of using the standard I/O functions is that they simplify dealing with lines of input (a
common occurrence in UNIX applications). The fgets function, for example, reads an
entire line. The read function, on the other hand, reads a specified number of bytes.
As we shall see in Section 5.4, the standard 1/O library provides functions that let us
control the style of buffering used by the library.

10 UNIX System Overview Chapter 1

The most common standard I/O function is printf. In programs that call
printf, we'll always include <stdio.h>—normally by including apue.h—as this
header contains the function prototypes for all the standard I/0O functions.

Example

The program in Figure 1.5, which we’ll examine in more detail in Section 5.8, is like the
previous program that called read and write. This program copies standard input to
standard output and can copy any regular file.

#include "apue.h"
int
main (void)

{

int c;
while ((c = getc(stdin)) != EOF)
if (putc{(c, stdout) == EOF)

err_sys("output error");

if (ferror(stdin))
err_sys("input error");

exit (0);

Figure 1.5 Copy standard input to standard output, using standard 1/0

The function getc reads one character at a time, and this character is written by putc.
After the last byte of input has been read, getc returns the constant EOF (defined in
<stdio.h>). The standard I/O constants stdin and stdout are also defined in the
<stdio.h> header and refer to the standard input and standard output. m]

1.6 Programs and Processes

Program

A program is an executable file residing on disk in a directory. A program is read into
memory and is executed by the kernel as a result of one of the six exec functions. We'll
cover these functions in Section 8.10.

Processes and Process ID

An executing instance of a program is called a process, a term used on almost every page
of this text. Some operating systems use the term task to refer to a program that is being
executed.

The UNIX System guarantees that every process has a unique numeric identifier
called the process ID. The process ID is always a non-negative integer.

Section 1.6 Programs and Processes 11

Example

The program in Figure 1.6 prints its process ID.

#include "apue.h"

int

main (void)

{
printf ("hello world from process ID %d\n", getpid()};
exit (0) ;

Figure 1.6 Print the process ID

If we compile this program into the file a. out and execute it, we have

$./a.out
hello world from process ID 851
$./a.out
hello world from process ID 854

When this program runs, it calls the function getpid to obtain its process ID. 0

Process Control

There are three primary functions for process control: fork, exec, and waitpid. (The
exec function has six variants, but we often refer to them collectively as simply the
exec function.)

Example

The process control features of the UNIX System are demonstrated using a simple
program (Figure 1.7) that reads commands from standard input and executes the
commands. This is a bare-bones implementation of a shell-like program. There are
several features to consider in this 30-line program.

e We use the standard I/O function fgets to read one line at a time from the
standard input. When we type the end-of-file character (which is often
Control-D) as the first character of a line, fgets returns a null pointer, the loop
stops, and the process terminates. In Chapter 18, we describe all the special
terminal characters—end of file, backspace one character, erase entire line, and
so on—and how to change them.

e Because each line returned by fgets is terminated with a newline character,
followed by a null byte, we use the standard C function strlen to calculate the
length of the string, and then replace the newline with a null byte. We do this
because the execlp function wants a null-terminated argument, not a
newline-terminated argument.

12

UNIX System Overview Chapter 1

#include "apue.h"
#include <sys/wait.h>

int

main(void)

{

char buf [MAXLINE] ; /* from apue.h */
pid_t pid;
int status;
printf("%$% "); /* print prompt (printf requires %% to print %) */
while (fgets(buf, MAXLINE, stdin) != NULL) {
if (buf[strlen(buf) - 1] == ’\n’)
buf [strlen(buf) - 1] = 0; /* replace newline with null */

}

if ((pid = fork()) < 0) {
err_sys("fork error");

} else if (pid == 0) { /* child */
execlp (buf, buf, (char *)0);
err_ret ("couldn’'t execute: %s", buf);
exit (127);

}

/* parent */

if ((pid = waitpid(pid, &status, 0)) < 0)
err sys("waitpid error");

printf ("$% ") ;

exit (0);

Figure 1.7 Read commands from standard input and execute them

* We call fork to create a new process, which is a copy of the caller. We say that

the caller is the parent and that the newly created process is the child. Then
fork returns the non-negative process ID of the new child process to the parent,
and returns 0 to the child. Because fork creates a new process, we say that it is
called once—by the parent—but returns twice—in the parent and in the child.

In the child, we call execlp to execute the command that was read from the
standard input. This replaces the child process with the new program file. The
combination of a fork, followed by an exec, is what some operating systems
call spawning a new process. In the UNIX System, the two parts are separated
into individual functions. We’ll have a lot more to say about these functions in
Chapter 8.

Because the child calls execlp to execute the new program file, the parent
wants to wait for the child to terminate. This is done by calling waitpid,
specifying which process we want to wait for: the pid argument, which is the

Section 1.6 Programs and Processes 13

process ID of the child. The waitpid function also returns the termination
status of the child—the status variable—but in this simple program, we don’t
do anything with this value. We could examine it to determine exactly how the
child terminated.

* The most fundamental limitation of this program is that we can’t pass
arguments to the command that we execute. We can't, for example, specify the
name of a directory to list. We can execute 1s only on the working directory. To
allow arguments would require that we parse the input line, separating the
arguments by some convention, probably spaces or tabs, and then pass each
argument as a separate argument to the execlp function. Nevertheless, this
program is still a useful demonstration of the process control functions of the
UNIX System.

If we run this program, we get the following results. Note that our program has a
different prompt—the percent sign—to distinguish it from the shell’s prompt.

$./a.out

% date

Sun Aug 1 03:04:47 EDT 2004 programmers work late
% who

sar :0 Jul 26 22:54

sar pts/0 Jul 26 22:54 (:0)

sar pts/1 Jul 26 22:54 (:0)

sar pts/2 Jul 26 22:54 (:0)

% pwd

/home/sar/bk/apue/2e

% 1s

Makefile

a.out

shelll.c

$ "D type the end-of-file character

$ the reqular shell prompt -

The notation ~D is used to indicate a control character. Control characters are special
characters formed by holding down the control key—often labeled Control or Ctrl—on
your keyboard and then pressing another key at the same time. Control-D, or "D, is the
default end-of-file character. We'll see many more control characters when we discuss
terminal I/O in Chapter 18.

Threads and Thread IDs

Usually, a process has only one thread of control—one set of machine instructions
executing at a time. Some problems are easier to solve when more than one thread of
control can operate on different parts of the problem. Additionally, multiple threads of
control can exploit the parallelism possible on multiprocessor systems.

14

UNIX System Overview Chapter 1

1.7

All the threads within a process share the same address space, file descriptors,
stacks, and process-related attributes. Because they can access the same memory, the
threads need to synchronize access to shared data among themselves to avoid
inconsistencies.

As with processes, threads are identified by IDs. Thread IDs, however, are local to a
process. A thread ID from one process has no meaning in another process. We use
thread IDs to refer to specific threads as we manipulate the threads within a process.

Functions to control threads parallel those used to control processes. Because
threads were added to the UNIX System long after the process model was established,
however, the thread model and the process model have some complicated interactions,
as we shall see in Chapter 12.

Error Handling

When an error occurs in one of the UNIX System functions, a negative value is often
returned, and the integer errno is usually set to a value that gives additional
information. For example, the open function returns either a non-negative file
descriptor if all is OK or —1 if an error occurs. An error from open has about 15 possible
errno values, such as file doesn’t exist, permission problem, and so on. Some functions
use a convention other than returning a negative value. For example, most functions
that return a pointer to an object return a null pointer to indicate an error.

The file <errno.h> defines the symbol errno and constants for each value that
errno can assume. Each of these constants begins with the character E. Also, the first
page of Section 2 of the UNIX system manuals, named intro(2), usually lists all these
error constants. For example, if errno is equal to the constant EACCES, this indicates a
permission problem, such as insufficient permission to open the requested file.

On Linux, the error constants are listed in the errno(3) manual page.

POSIX and ISO C define errno as a symbol expanding into a modifiable Ivalue of
type integer. This can be either an integer that contains the error number or a function
that returns a pointer to the error number. The historical definition is

extern int errno;

But in an environment that supports threads, the process address space is shared among
multiple threads, and each thread needs its own local copy of errno to prevent one
thread from interfering with another. Linux, for example, supports multithreaded
access to exrno by defining it as

extern int *__errno_location (void) ;
#define errno (*__errno_location())

There are two rules to be aware of with respect to errno. First, its value is never
cleared by a routine if an error does not occur. Therefore, we should examine its value
only when the return value from a function indicates that an error occurred. Second,
the value of errno is never set to 0 by any of the functions, and none of the constants
defined in <errno. h> has a value of 0.

Section 1.7 ' Error Handling 15

Two functions are defined by the C standard to help with printing error messages.

#include <string.h>
char *strerror (int errnum) ;

Returns: pointer to message string

This function maps errnum, which is typically the errno value, into an error message
string and returns a pointer to the string.

The perror function produces an error message on the standard error, based on
the current value of errno, and returns.

#include <stdio.h>

void perror (const char *msg);

It outputs the string pointed to by msg, followed by a colon and a space, followed by the
error message corresponding to the value of exrrno, followed by a newline.

Example

Figure 1.8 shows the use of these two error functions.

#include "apue.h"
#include <errno.h>

int
main(int argc, char *argv(])
{
fprintf (stderr, "EACCES: %s\n", strerror (EACCES)) ;
errno = ENOENT;
perror (argv([0]) ;
exit (0);

Figure 1.8 Demonstrate strerror and perror

If this program is compiled into the file a. out, we have

$./a.out
EACCES: Permission denied
./a.out: No such file or directory

Note that we pass the name of the program—argv [0], whose value is . /a.out—as
the argument to perror. This is a standard convention in the UNIX System. By doing
this, if the program is executed as part of a pipeline, as in

progl < inputfile | prog2 | prog3 > outputfile

we are able to tell which of the three programs generated a particular error message. 0O

16

UNIX System Overview Chapter 1

Instead of calling either strerror or perror directly, all the examples in this text
use the error functions shown in Appendix B. The error functions in this appendix let
us use the variable argument list facility of ISO C to handle error conditions with a
single C statement.

Error Recovery

1.8

The errors defined in <errno.h> can be divided into two categories: fatal and nonfatal.
A fatal error has no recovery action. The best we can do is print an error message on the
user’s screen or write an error message into a log file, and then exit. Nonfatal errors, on
the other hand, can sometimes be dealt with more robustly. Most nonfatal errors are
temporary in nature, such as with a resource shortage, and might not occur when there
is less activity on the system.

Resource-related nonfatal errors include EAGAIN, ENFILE, ENOBUFS, ENOLCK,
ENOSPC, ENOSR, EWOULDBLOCK, and sometimes ENOMEM. EBUSY can be treated as a
nonfatal error when it indicates that a shared resource is in use. Sometimes, EINTR can
be treated as a nonfatal error when it interrupts a slow system call (more on this in
Section 10.5).

The typical recovery action for a resource-related nonfatal error is to delay a little
and try again later. This technique can be applied in other circumstances. For example,
if an error indicates that a network connection is no longer functioning, it might be
possible for the application to delay a short time and then reestablish the connection.
Some applications use an exponential backoff algorithm, waiting a longer period of time
each iteration.

Ultimately, it is up to the application developer to determine which errors are
recoverable. If a reasonable strategy can be used to recover from an error, we can
improve the robustness of our application by avoiding an abnormal exit.

User Identification

User ID

The user ID from our entry in the password file is a numeric value that identifies us to
the system. This user ID is assigned by the system administrator when our login name
is assigned, and we cannot change it. The user ID is normally assigned to be unique for
every user. We'll see how the kernel uses the user ID to check whether we have the
appropriate permissions to perform certain operations.

We call the user whose user ID is 0 either root or the superuser. The entry in the
password file normally has a login name of root, and we refer to the special privileges
of this user as superuser privileges. As we'll see in Chapter 4, if a process has superuser
privileges, most file permission checks are bypassed. Some operating system functions
are restricted to the superuser. The superuser has free rein over the system.

Client versions of Mac OS X ship with the superuser account disabled; server versions ship
with the account already enabled. Instructions are available on Apple’s Web site describing
how to enable it. See http://docs.info.apple.com/article.html?artnum=106290.

Section 1.8 User Identification 17

Group ID

Our entry in the password file also specifies our numeric group ID. This too is assigned
by the system administrator when our login name is assigned. Typically, the password
file contains multiple entries that specify the same group ID. Groups are normally used
to collect users together into projects or departments. This allows the sharing of
resources, such as files, among members of the same group. We'll see in Section 4.5 that
we can set the permissions on a file so that all members of a group can access the file,
whereas others outside the group cannot.

There is also a group file that maps group names into numeric group IDs. The
group file is usually /etc/group.

The use of numeric user IDs and numeric group IDs for permissions is historical.
With every file on disk, the file system stores both the user ID and the group ID of a
file’s owner. Storing both of these values requires only four bytes, assuming that each is
stored as a two-byte integer. If the full ASCII login name and group name were used
instead, additional disk space would be required. In addition, comparing strings
during permission checks is more expensive than comparing integers.

Users, however, work better with names than with numbers, so the password file
maintains the mapping between login names and user IDs, and the group file provides
the mapping between group names and group IDs. The 1s -1 command, for example,
prints the login name of the owner of a file, using the password file to map the numeric
user ID into the corresponding login name.

Early UNIX systems used 16-bit integers to represent user and group IDs. Contemporary
UNIX systems use 32-bit integers.

Example

The program in Figure 1.9 prints the user ID and the group ID.

#include "apue.h"

int

main(void)

{
printf ('uid = %d, gid = %d\n", getuid(), getgid());
exit (0);

Figure 1.9 Print user ID and group ID

We call the functions getuid and getgid to return the user ID and the group ID.
Running the program yields

$./a.out
uid = 205, gid = 105

18

UNIX System Overview Chapter 1

Supplementary Group iDs

1.9

In addition to the group ID specified in the password file for a login name, most
versions of the UNIX System allow a user to belong to additional groups. This started
with 4.2BSD, which allowed a user to belong to up to 16 additional groups. These
supplementary group IDs are obtained at login time by reading the file /etc/group and
finding the first 16 entries that list the user as a member. As we shall see in the next
chapter, POSIX requires that a system support at least eight supplementary groups per
process, but most systems support at least 16.

Signals

Signals are a technique used to notify a process that some condition has occurred. For
example, if a process divides by zero, the signal whose name is SIGFPE (floating-point
exception) is sent to the process. The process has three choices for dealing with the
signal.

1. Ignore the signal. This option isn’t recommended for signals that denote a
hardware exception, such as dividing by zero or referencing memory outside
the address space of the process, as the results are undefined.

2. Let the default action occur. For a divide-by-zero condition, the default is to
terminate the process.

3. Provide a function that is called when the signal occurs (this is called “catching”
the signal). By providing a function of our own, we’ll know when the signal
occurs and we can handle it as we wish.

Many conditions generate signals. Two terminal keys, called the interrupt key—
often the DELETE key or Control-C—and the quit key—often Control-backslash—are
used to interrupt the currently running process. Another way to generate a signal is by
calling the ki11 function. We can call this function from a process to send a signal to
another process. Naturally, there are limitations: we have to be the owner of the other
process (or the superuser) to be able to send it a signal. '

Example

Recall the bare-bones shell example (Figure 1.7). If we invoke this program and press
the interrupt key, the process terminates because the default action for this signal,
named SIGINT, is to terminate the process. The process hasn’t told the kernel to do
anything other than the default with this signal, so the process terminates.

To catch this signal, the program needs to call the signal function, specifying the
name of the function to call when the SIGINT signal is generated. The function is
named sig_int; when it’s called, it just prints a message and a new prompt. Adding

Section 1.9

Signals 19

11 lines to the program in Figure 1.7 gives us the version in Figure 1.10. (The 11 new
lines are indicated with a plus sign at the beginning of the line.)

#include "apue.h"
#include <sys/wait.h>

+ static void sig_int(int); /* our signal-catching function */
+
int
main(void)
{
char buf [MAXLINE] ; /* from apue.h */
pid t pid;
int status;
+ if (signal (SIGINT, sig_int) == SIG_ERR)
+ err_sys("signal error");
+
printf("%% "); /* print prompt (printf requires %% to print %) */
while (fgets(buf, MAXLINE, stdin) != NULL) {
if (buf[strlen(buf) - 1] == ’'\n’)
buf [strlen(buf) - 1] = 0; /* replace newline with null */
if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid == 0) { /* child */
execlp (buf, buf, (char *)0);
err ret("couldn’t execute: %s", buf);
exit (127);
}
/* parent */
if ((pid = waitpid(pid, &status, 0)) < 0)
err_sys("waitpid error");
printf ("%% ");
}
exit (0) ;
}
+
+ void
+ sig_int (int signo)
+ |
+ printf ("interrupt\n%% ");
+ }

Figure 1.10 Read commands from standard input and execute them

In Chapter 10, we'll take a long look at signals, as most nontrivial applications deal

with them.]

20 UNIX System Overview Chapter 1

1.10 Time Values

Historically, UNIX systems have maintained two different time values:

1. Calendar time. This value counts the number of seconds since the Epoch:
00:00:00 January 1, 1970, Coordinated Universal Time (UTC). (Older manuals
refer to UTC as Greenwich Mean Time.) These time values are used to record
the time when a file was last modified, for example.

The primitive system data type time_t holds these time values.

2. Process time. This is also called CPU time and measures the central processor
resources used by a process. Process time is measured in clock ticks, which
have historically been 50, 60, or 100 ticks per second.

The primitive system data type clock_t holds these time values. (We'll show
how to obtain the number of clock ticks per second with the sysconf function
in Section 2.5.4.)

When we measure the execution time of a process, as in Section 3.9, we’ll see that
the UNIX System maintains three values for a process:

* Clock time
¢ User CPU time
* System CPU time

The clock time, sometimes called wall clock time, is the amount of time the process takes
to run, and its value depends on the number of other processes being run on the system.
Whenever we report the clock time, the measurements are made with no other activities
on the system.

The user CPU time is the CPU time attributed to user instructions. The system CPU
time is the CPU time attributed to the kernel when it executes on behalf of the process.
For example, whenever a process executes a system service, such as read or write, the
time spent within the kernel performing that system service is charged to the process.
The sum of user CPU time and system CPU time is often called the CPU time.

It is easy to measure the clock time, user time, and system time of any process:
simply execute the t ime(1) command, with the argument to the t ime command being
the command we want to measure. For example:

$ ecd /usr/include
.$ time -p grep _POSIX SOURCE */*.h > /dev/null

real Om0.81s
user Om0.11s
sys O0m0.07s

The output format from the time command depends on the shell being used, because
some shells don’t run /usr/bin/time, but instead have a separate built-in function to
measure the time it takes commands to run.

In Section 8.16, we'll see how to obtain these three times from a running process.
The general topic of times and dates is covered in Section 6.10.

Section 1.11 System Calls and Library Functions 21

1.1

System Calls and Library Functions

All operating systems provide service points through which programs request services
from the kernel. All implementations of the UNIX System provide a well-defined,
limited number of entry points directly into the kernel called system calls (recall
Figure 1.1). Version 7 of the Research UNIX System provided about 50 system calls,
4.4BSD provided about 110, and SVR4 had around 120. Linux has anywhere between
240 and 260 system calls, depending on the version. FreeBSD has around 320.

The system call interface has always been documented in Section 2 of the UNIX
Programmer’s Manual. Its definition is in the C language, regardless of the actual
implementation technique used on any given system to invoke a system call. This
differs from many older operating systems, which traditionally defined the kernel entry
points in the assembler language of the machine.

The technique used on UNIX systems is for each system call to have a function of
the same name in the standard C library. The user process calls this function, using the
standard C calling sequence. This function then invokes the appropriate kernel service,
using whatever technique is required on the system. For example, the function may put
one or more of the C arguments into general registers and then execute some machine
instruction that generates a software interrupt in the kernel. For our purposes, we can

" consider the system calls as being C functions.

Section 3 of the UNIX Programmer’s Manual defines the general-purpose functions
available to programmers. These functions aren’t entry points into the kernel, although
they may invoke one or more of the kernel’s system calls. For example, the printf
function may use the write system call to output a string, but the strcpy (copy a
string) and atoi (convert ASCII to integer) functions don’t involve the kernel at all.

From an implementor’s point of view, the distinction between a system call and a
library function is fundamental. But from a user’s perspective, the difference is not as
critical. From our perspective in this text, both system calls and library functions
appear as normal C functions. Both exist to provide services for application programs.
We should realize, however, that we can replace the library functions, if desired,
whereas the system calls usually cannot be replaced.

Consider the memory allocation function malloc as an example. There are many
ways to do memory allocation and its associated garbage collection (best fit, first fit, and
so on). No single technique is optimal for all programs. The UNIX system call that
handles memory allocation, sbrk(2), is not a general-purpose memory manager. It
increases or decreases the address space of the process by a specified number of bytes.
How that space is managed is up to the process. The memory allocation function,
malloc(3), implements one particular type of allocation. If we don’t like its operation,
we can define our own malloc function, which will probably use the sbrk system call.
In fact, numerous software packages implement their own memory allocation
algorithms with the sbrk system call. Figure 1.11 shows the relationship between the
application, the malloc function, and the sbrk system call.

Here we have a clean separation of duties: the system call in the kernel allocates an
additional chunk of space on behalf of the process. The malloc library function
manages this space from user level.

22

UNIX System Overview Chapter 1

application
code

[

user process

memory allocation
function malloc

sbrk
system call

kernel

Figure 1.11 Separation of malloc function and sbrk system call

Another example to illustrate the difference between a system call and a library
function is the interface the UNIX System provides to determine the current time and
date. Some operating systems provide one system call to return the time and another to
return the date. Any special handling, such as the switch to or from daylight saving
time, is handled by the kernel or requires human intervention. The UNIX System, on
the other hand, provides a single system call that returns the number of seconds since
the Epoch: midnight, January 1, 1970, Coordinated Universal Time. Any interpretation
of this value, such as converting it to a human-readable time and date using the local
time zone, is left to the user process. The standard C library provides routines to handle
most cases. These library routines handle such details as the various algorithms for
daylight saving time.

An application can call either a system call or a library routine. Also realize that
many library routines invoke a system call. This is shown in Figure 1.12.

Another difference between system calls and library functions is that system calls
usually provide a minimal interface, whereas library functions often provide more
elaborate functionality. We've seen this already in the difference between the sbrk
system call and the malloc library function. We'll see this difference later, when we
compare the unbuffered 1/O functions (Chapter 3) and the standard I/O functions
(Chapter 5).

The process control system calls (fork, exec, and wait) are usually invoked by the
user’s application code directly. (Recall the bare-bones shell in Figure 1.7.) But some

Section 1.12 Summary 23

1.12

code

application l

i
I
|
i
i
1
| user process
I
|
1
;
I
I
I

C library
functions

system calls

kernel

Figure 1.12 Difference between C library functions and system calls

library routines exist to simplify certain common cases: the system and popen library
routines, for example. In Section 8.13, we’ll show an implementation of the system
function that invokes the basic process control system calls. We'll enhance this example
in Section 10.18 to handle signals correctly.

To define the interface to the UNIX System that most programmers use, we have to
describe both the system calls and some of the library functions. If we described only
the sbrk system call, for example, we would skip the more programmer-friendly
malloc library function that many applications use. In this text, we'll use the term
function to refer to both system calls and library functions, except when the distinction is
necessary.

Summary

This chapter has been a short tour of the UNIX System. We've described some of the
fundamental terms that we’ll encounter over and over again. We've seen numerous
small examples of UNIX programs to give us a feel for what the remainder of the text
talks about.

The next chapter is about standardization of the UNIX System and the effect of
work in this area on current systems. Standards, particularly the ISO C standard and
the POSIX.1 standard, will affect the rest of the text.

24 UNIX System Overview Chapter 1

Exercises

11 Verify on your system that the directories dot and dot-dot are not the same, except in the
root directory.

1.2 In the output from the program in Figure 1.6, what happened to the processes with process
IDs 852 and 853?

1.3 In Section 1.7, the argument to perror is defined with the ISO C attribute const, whereas
the integer argument to strerror isn’t defined with this attribute. Why?

14 In the error-handling function err_sys in Appendix B, why is the value of errno saved
when the function is called?

1.5 If the calendar time is stored as a signed 32-bit integer, in what year will it overflow? What
ways can be used to extend the overflow point? Are they compatible with existing
applications?

1.6 If the process time is stored as a signed 32-bit integer, and if the system counts 100 ticks per

second, after how many days will the value overflow?

2.1

2.2

UNIX Standardization and
Implementations

Introduction

Much work has gone into standardizing the UNIX programming environment and the
C programming language. Although applications have always been quite portable
across different versions of the UNIX operating system, the proliferation of versions and
differences during the 1980s led many large users, such as the U.S. government, to call
for standardization.

In this chapter we first look at the various standardization efforts that have been
under way over the past two decades. We then discuss the effects of these UNIX
programming standards on the operating system implementations that are described in
this book. An important part of all the standardization efforts is the specification of
various limits that each implementation must define, so we look at these limits and the
various ways to determine their values.

UNIX Standardization

221 ISO C

In late 1989, ANSI Standard X3.159-1989 for the C programming language was
approved. This standard has also been adopted as international standard 1SO/IEC
9899:1990. ANSI is the American National Standards Institute, the U.S. member in the
International Organization for Standardization (ISO). IEC stands for the International
Electrotechnical Commission.

25

26 UNIX Standardization and Implementations . Chapter 2

The C standard is now maintained and developed by the ISO/IEC international
standardization working group for the C programming language, known as ISO/IEC
JTC1/5C22/WG14, or WG14 for short. The intent of the ISO C standard is to provide
portability of conforming C programs to a wide variety of operating systems, not only
the UNIX System. This standard defines not only the syntax and semantics of the
programming language but also a standard library [Chapter 7 of 1SO 1999; Plauger
1992; Appendix B of Kernighan and Ritchie 1988]. This library is important because all
contemporary UNIX systems, such as the ones described in this book, provide the
library routines that are specified in the C standard.

In 1999, the ISO C standard was updated and approved as ISO/IEC 9899:1999,
largely to improve support for applications that perform numerical processing. The
changes don'’t affect the POSIX standards described in this book, except for the addition
of the restrict keyword to some of the function prototypes. This keyword is used to
tell the compiler which pointer references can be optimized, by indicating that the object
to which the pointer refers is accessed in the function only via that pointer.

As with most standards, there is a delay between the standard’s approval and the
modification of software to conform to it. As each vendor’s compilation systems
evolve, they add more support for the latest version of the ISO C standard.

A summary of the current level of conformance of gcc to the 1999 version of the ISO C
standard is available at http: //www.gnu.org/software/gcc/c99status . html.

The ISO C library can be divided into 24 areas, based on the headers defined by the
standard. Figure 2.1 lists the headers defined by the C standard. The POSIX.1 standard
includes these headers, as well as others. We also list which of these headers are
supported by the four implementations (FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and
Solaris 9) that are described later in this chapter.

The ISO C headers depend on which version of the C compiler is used with the operating
system. When considering Figure 2.1, note that FreeBSD 5.2.1 ships with version 3.3.3 of gcc,
Solaris 9 ships with both version 2.95.3 and version 3.2 of gcc, Mandrake 9.2 (Linux 2.4.22)
ships with version 3.3.1 of gcc, and Mac OS X 10.3 ships with version 3.3 of gcc. Mac OS X
also includes older versions of gcc.

2.2.2 |EEE POSIX

POSIX is a family of standards developed by the IEEE (Institute of Electrical and
Electronics Engineers). POSIX stands for Portable Operating System Interface. It
originally referred only to the IEEE Standard 1003.1-1988—the operating system
interface—but was later extended to include many of the standards and draft standards
with the 1003 designation, including the shell and utilities (1003.2).

Of specific interest to this book is the 1003.1 operating system interface standard,
whose goal is to promote the portability of applications among various UNIX System
environments. - This standard defines the services that must be provided by an
operating system if it is to be “POSIX compliant,” and has been adopted by most
computer vendors. Although the 1003.1 standard is based on the UNIX operating

Section 2.2 UNIX Standardization 27

Header FreeBSD Linux Mac OS X Solaris Descripti
521 2422 103 9 escription
<assert.h> . . . * |verify program assertion
<complex.h> . . . complex arithmetic support
<ctype.h> character types
<errno.h> . . . e lerror codes (Section 1.7)
<fenv.h> . . floating-point environment
<float.h> . . . ¢ |floating-point constants
<inttypes.h> integer type format conversion
<i80646.h> . . . » |alternate relational operator macros
<limits.h> . . . e |implementation constants (Section 2.5)
<locale.h> . . . * |locale categories
<math.h> N . d . mathematical constants
<setjmp.h> . . . ¢ nonlocal goto (Section 7.10)
<signal.h> . . . e |signals (Chapter 10)
<stdarg.h> . . . * |variable argument lists
<stdbool.h> . . . * |boolean type and values
<stddef .h> . . . e |standard definitions
<stdint.h> . . . integer types
<stdio.h> . . . e |standard I/0O library (Chapter 5)
<stdlib.h> . . . e |utility functions
<string.h> . . i e |string operations
<tgmath.h> . type-generic math macros
<time.h> . . . e [time and date (Section 6.10)
<wchar.h> . . . e |extended multibyte and wide character support
| <wctype.h> . . . ¢ |wide character classification and mapping support

Figure 2.1 Headers defined by the ISO C standard

system, the standard is not restricted to UNIX and UNIX-like systems. Indeed, some
vendors supplying proprietary operating systems claim that these systems have been
made POSIX compliant, while still leaving all their proprietary features in place.

Because the 1003.1 standard specifies an interface and not an implementation, no
distinction is made between system calls and library functions. All the routines in the
standard are called functions.

Standards are continually evolving, and the 1003.1 standard is no exception. The
1988 version of this standard, IEEE Standard 1003.1-1988, was modified and submitted
to the International Organization for Standardization. No new interfaces or features
were added, but the text was revised. The resulting document was published as IEEE
Std 1003.1-1990 [IEEE 1990]. This is also the international standard ISO/IEC
9945-1:1990. This standard is commonly referred to as POSIX.1, which we’ll use in this
text.

The IEEE 1003.1 working group continued to make changes to the standard. In
1993, a revised version of the IEEE 1003.1 standard was published. It included
1003.1-1990 standard and the 1003.1b-1993 real-time extensions standard. In 1996, the
standard was again updated as international standard ISO/IEC 9945-1:1996. It
included interfaces for multithreaded programming, called pthreads for POSIX threads.
More real-time interfaces were added in 1999 with the publication of IEEE Standard

28 UNIX Standardization and Implementations Chapter 2

1003.1d-1999. A year later, IEEE Standard 1003.1j-2000 was published, including even
more real-time interfaces, and IEEE Standard 1003.1q-2000 was published, adding
event-tracing extensions to the standard.

The 2001 version of 1003.1 departed from the prior versions in that it combined
several 1003.1 amendments, the 1003.2 standard, and portions of the Single UNIX
Specification (SUS), Version 2 (more on this later). The resulting standard, [EEE
Standard 1003.1-2001, includes the following other standards:

¢ ISO/IEC 9945-1 (IEEE Standard 1003.1-1996), which includes
¢ [EEE Standard 1003.1-1990
* IEEE Standard 1003.1b-1993 (real-time extensions)
* IEEE Standard 1003.1c-1995 (pthreads)
* IEEE Standard 1003.1i-1995 (real-time technical corrigenda)
IEEE P1003.1a draft standard (system interface revision)
IEEE Standard 1003.1d-1999 (advanced real-time extensions)
IEEE Standard 1003.1j-2000 (more advanced real-time extensions)
IEEE Standard 1003.1g-2000 (tracing)
IEEE Standard 1003.2d-1994 (batch extensions)
IEEE P1003.2b draft standard (additional utilities)
Parts of IEEE Standard 1003.1g-2000 (protocol-independent interfaces)
ISO/IEC 9945-2 (IEEE Standard 1003.2-1993)
The Base Specifications of the Single UNIX Specification, version 2, which include
* System Interface Definitions, Issue 5
¢ Commands and Utilities, Issue 5
¢ System Interfaces and Headers, Issue 5
* Open Group Technical Standard, Networking Services, Issue 5.2
* ISO/IEC 9899:1999, Programming Languages - C

Figure 2.2, Figure 2.3, and Figure 2.4 summarize the required and optional headers
as specified by POSIX.1. Because POSIX.1 includes the ISO C standard library
functions, it also requires the headers listed in Figure 2.1. All four figures summarize
which headers are included in the implementations discussed in this book.

In this text we describe the 2001 version of POSIX.1, which includes the functions
specified in the ISO C standard. Its interfaces are divided into required ones and
optional ones. The optional interfaces are further divided into 50 sections, based on
functionality. The sections containing nonobsolete programming interfaces are
summarized in Figure 2.5 with their respective option codes. Option codes are two- to
three-character abbreviations that help identify the interfaces that belong to each
functional area. The option codes highlight text on manual pages where interfaces
depend on the support of a particular option. Many of the options deal with real-time
extensions.

POSIX.1 does not include the notion of a superuser. Instead, certain operations
require “appropriate privileges,” although POSIX.1 leaves the definition of this term up
to the implementation. UNIX systems that conform to the Department of Defense
security guidelines have many levels of security. In this text, however, we use the
traditional terminology and refer to operations that require superuser privilege.

Section 2.2 UNIX Standardization 29

Header FreeBSD Linux Mac OS X Solaris Description
521 2422 10.3 9

<dirent.h> . . . * |directory entries (Section 4.21)
<fentl . hs> . . . e |file control (Section 3.14)
<fnmatch.h> . . . ¢ |filename-matching types
<glob.h> . . . ¢ |pathname pattern-matching types
<grp.h> . . . e group file (Section 6.4)
<netdb.h> . . . * Inetwork database operations
<pwd.h> . . . s |password file (Section 6.2)
<regex.h> . . U * |regular expressions
<tar.h> tar archive values
<termios.h> terminal I/O (Chapter 18)
<unistd.h> . . . ¢ |symbolic constants
<utime.h> file times (Section 4.19)
<wordexp.h> . . . word-expansion types
<arpa/inet.h> Internet definitions (Chapter 16)
<net/if.h> . . . * |socket local interfaces (Chapter 16)
<netinet/in.h> Internet address family (Section 16.3)
<netinet/tcp.h> . . . e | Transmission Control Protocol definitions
<sys/mman.h> memory management declarations
<sys/select.h> select function (Section 14.5.1)
<sys/socket.h> sockets interface (Chapter 16)
<sys/stat.h> file status (Chapter 4)
<sys/times.h> process times (Section 8.16)
<sys/types.h> . . . e |primitive system data types (Section 2.8)
<sys/un.h> . . . ¢ |UNIX domain socket definitions (Section 17.3)
<sys/utsname.h> . . . ¢ [system name (Section 6.9)
<sys/wait.h> process control (Section 8.6)

Figure 2.2 Required headers defined by the POSIX standard

After almost twenty years of work, the standards are mature and stable. The
POSIX.1 standard is maintained by an open working group known as the Austin Group
(http://www.opengroup.org/austin). To ensure that they are still relevant, the
standards need to be either updated or reaffirmed every so often.

2.2.3 The Single UNIX Specification

The Single UNIX Specification, a superset of the POSIX.1 standard, specifies additional
interfaces that extend the functionality provided by the basic POSIX.1 specification. The
complete set of system interfaces is called the X/Open System Interface (XSI). The
_XOPEN UNIX symbolic constant identifies interfaces that are part of the XSI extensions
to the base POSIX.1 interfaces.

The XSI also defines which optional portions of POSIX.1 must be supported for an
implementation to be deemed XSI conforming. These include file synchronization,
memory-mapped files, memory protection, and thread interfaces, and are marked in
Figure 2.5 as “SUS mandatory.” Only XSI-conforming implementations can be called
UNIX systems. '

30 UNIX Standardization and Implementations Chapter 2

The Open Group owns the UNIX trademark and uses the Single UNIX Specification to define
the interfaces an implementation must support to call itself a UNIX system. Implementations
must file conformance statements, pass test suites that verify conformance, and license the
right to use the UNIX trademark.

Header FreeBSD Linux Mac OS X Solaris Description
521 2422 103 9

<cpio.h> . . ¢ |cpio archive values
<dlfen. h> . . . * |dynamic linking
<fmtmsg.h> . . * |message display structures
<ftw.h> . ¢ |file tree walking (Section 4.21)
<iconv.h> . . ® |codeset conversion utility
<langinfo.h> . . . ¢ |language information constants
<libgen.h> . . . ® |definitions for pattern-matching function
<monetary.h> . . N ¢ |[monetary types
<ndbm.h> . . * |database operations
<nl_types.h> . . . * |message catalogs
<poll.h> . . . ¢ |poll function (Section 14.5.2)
<search.h> . . . ® [search tables
<strings.h> . . . ® |string operations
<syslog.h> . . . ® |system error logging (Section 13.4)
<ucontext.h> . L L . user context
<ulimit.h> . . . * |user limits
<utmpx.h> . ® |user accounting database
<sys/ipc.h> . . . * {IPC (Section 15.6)
<sys/msg.h> . . ® | message queues (Section 15.7)
<sys/resource.h> . . . ® |resource operations (Section 7.11)
<sys/sem.h> . . . ¢ |semaphores (Section 15.8)
<sys/shm.h> . . . ¢ |shared memory (Section 15.9)
<sys/statvfs.h> . . ¢ |file system information
<sys/time.h> . . . * |time types
<sys/timeb.h> . . . * |additional date and time definitions
<sys/uio.h> . . . * |vector I/O operations (Section 14.7)

Figuge 2.3 XSI extension headers defined by the POSIX standard

Header FreeBSD Linux Mac OS X Solaris Description
521 2422 103 9

<aio.h> . o . * |asynchronous I/O
<mqueue.h> . ® |message queues
<pthread.h> . . . ¢ |threads (Chapters 11 and 12)
<sched.h> . . . * |execution scheduling
<semaphore.h> . . . * |semaphores
<spawn.h> . real-time spawn interface
<stropts.h> . ® |XSISTREAMS interface (Section 14.4)
<trace.h> event tracing

Figure 2.4 Optional headers defined by the POSIX standard

